Socio-Semantic Network Motifs Framework for Discourse Analysis

Bodong Chen, Xinran Zhu, Hong Shui University of Minnesota

### Collaborative Discourse?

- **Socio-cognitive learning theories**: *Interpersonal communication* is essential for learning in various contexts.
- In the context of education: Collaborative discourse aims to leverage both cognitive and social process for learners to engage in activities such as articulation, explanation, questioning and knowledge co-construction.

#### **Collaborative Discourse**



Learners' interpersonal communication and intersubjective meaning-making to achieve learning goals beyond each individual.



A direct exchange between humans who can contribute intentionality and understanding to one another – the foundational act of language & an important tool for learning.



In authentic settings, sophisticated collaborative discourse can involve complex dynamics of social and cognitive processes.



# Analysis of collaborative discourse - a multi-faceted phenomenon

### Analytic approaches in three domains:



#### **Cognitive Domain**

- specific constructs of cognition

Content analysis



### **Network** approaches:

Content entities such as words can be studied as networks (e.g., co-occurrence, word sequence).



#### **Social Domain**

- constructs related to group dynamics, coordination, and affective factors

Content analysis & Social Network Analysis (SNA)



Social network centrality measures are used to evaluate a student's social position in a class & network-level measures.



#### **Integrated Domain**

- connection between cognitive and social domains, e.g., transactivity.



Socio-semantic network analysis integrates semantic features of discourse with social networks.

(Chen, Andrews, Hmelo-Silver, & D'Angelo, 2019)

# Challenges of the network approaches

- Researchers need to more explicitly address discourse processes and assumptions when constructing network from discourse data
- Given the close-knit relationship between cognitive and social aspects of discourse, we need more ways to examine the integrated domain of discourse
- We need to develop more actionable discourse indicators to improve the impact of discourse analytics



Socio-semantic network analysis

# The current study



Grounded in socio-cognitive learning theories

Inspired by advances in network science

Motivated by a need for more integrated approaches to investigating learning dialogues

Socio-semantic network (SSN) motifs framework



## The Socio-Semantic Network Motifs Framework: Overview

- Discourse as social-semantic networks (SSNs)
- The SSN motifs: minimal sets of social and semantic entities that are basic building blocks of a socio-semantic network.
- In network science, network motifs have been widely used to examine a variety of networks including biological, technological, infrastructural, and social networks (e.g. the two-layer network motifs for the socio-ecological systems).





# The SSN Motifs: Situating in Collaborative Discourse



Modeling Collaborative Discourse



# Modeling Collaborative Discourse as SSN – a case study

- Analytical decisions what information to be retained and discarded?
  - the top 100 high frequency words that have appeared for minimally 5 times are incorporated in the socio-semantic network.

Define the nodes and edges:



- Only writing behaviors were considered
- Threshold: edges with a weight 2.



Undirected for simplicity

Learner-Learner





# Computing SSN Motifs and the Significance Profile

- Whether the generated SSN is significantly different from random graphs?
  - Step 1: compute motif frequencies (*motifr* R package, v 0.5.0) initial indicators of the discourse's motif profile
  - Step 2: examine the significance of the motif frequencies
    - Generate 1,000 refined Erdos-Rényi random graphs as the null model
    - Compare the empirical network's motif frequencies with the random graphs
    - A Z-score (-1, 1) is calculated for each SSN motif to show its over- or under-representation in the empirical network



• **Context**: a secondary dataset generated from an undergraduate online course



- Students (n = 13)
- Annotate 1-2 readings each week and reply to each other.
- 18 readings across 11 weeks

#### **Quantity of posts**

- In total:
  - 478 Hypothes.is annotations
  - 469 replies
- On average:
  - Each reading had 26.6 annotations
     (SD = 2.6) and 26.1 replies (SD = 4.0).

#### **Quality of posts (human-coding)**

A four-level knowledge construction coding-scheme comprising (1) Initiation, (2) Exploration, (3) Negotiation, (4) Co-construction (Zhu, et al., 2021).

- higher levels → higher order-thinking skills
- 2.36 (SD = 0.21)



 Findings – An example socio-semantic network created from discourse around a particular reading.



- Upper layer: the undirected interaction network of students
- Lower layer: high frequency words generated from students' written discourse in a given week
- **Link between two layers**: a word was mentioned at least twice in a student's posts.



### • Findings – Motif Analysis

Overview of the significance of SSN motifs across all readings



o Interpretation: it is insufficient to evaluate discourse based on one SSN motif; instead, it is critical to concurrently consider multiple motifs.

Over-represented



Under-represented

Findings – visualization of the SSN Motif Profiles of readings



## Two ways to look at the graphs:

- I. In general, the class was well-connected:
  over-presentation of more sophisticated motifs and under-representation of less sophisticated motifs
- Zooming into a particular reading to compare it with other readings

#### Findings

O **Correlation** (Spearman's ρ) between SSN motifs and knowledge construction:



- positively correlated: A(0,1), E(1,4) (Spearman's  $\rho > .4$ ); A(0.2b), D(1,2) (Spearman's  $\rho > .2$ )
- negatively correlated (Spearman's  $\rho$  < -.2): **B(0,3), C(1,1),** and **C(1,2a),** and **E(0,4)**

#### Interpretation:

■ The average normalized Z-scores of motifs A(0,1), B(0,3), C(1,2a), and E(0,4) close to zero, meaning they were nonsignificant in comparison with the random graph baseline.

| Motif | A(0,0) | A(1,0) | A(0,1) | A(0,2a) | A(0,2b) | B(0,2) | B(0,3) | C(1,1) | C(1,2a) | C(1,2b) | D(1,2) | E(0,4) | E(1,3) | E(1,4) |
|-------|--------|--------|--------|---------|---------|--------|--------|--------|---------|---------|--------|--------|--------|--------|
| Mean  | 0.22   | -0.04  | 0.01   | 0.33    | -0.49   | -0.21  | -0.07  | -0.13  | -0.02   | -0.21   | 0.12   | 0.08   | 0.18   | 0.39   |
| SD    | 0.08   | 0.15   | 0.06   | 0.25    | 0.20    | 0.26   | 0.07   | 0.03   | 0.17    | 0.15    | 0.15   | 0.10   | 0.07   | 0.09   |

■ Therefore, higher Z-scores of **E(1,4)**, **and A(0,2b)** were associated with higher knowledge construction, whereas **higher C(1,1)** were linked to lower knowledge constructions.









### Conclusion and Implications

### Key findings:

- We proposes a nascent socio-semantic network (SSN) motifs framework for the analysis of collaborative discourse.
- Results showed general characteristics of discourse in the class as well as distinct motif profiles of different discourse segments.
- Some SSN motifs were associated with higher- or lower-level knowledge construction

### Implications:

- The motifs framework can provide an overview of discourse
- In comparison with traditional descriptive statistics and SNA metrics, the SSN motifs can provide nuanced information about discourse, which can be used to evaluate instruction and inform pedagogical actions.
- The framework is generic enough to be adapted to different discourse contexts.



### Future Work

- To further refine the motif classification system.
- Apply the framework to other discourse contexts and situate it closely in pedagogical designs
- Combine SSN motif analysis with other analytical methods
- Explore pedagogical interventions based on network motifs, such as "critical gaps" showing high impact links that could create a large number of sophisticated motifs.



# Thank you!

Learning Futures Research Group: <a href="https://learningfutures.github.io/">https://learningfutures.github.io/</a>

✓ @bodOng - <a href="mailto:chenbd@umn.edu">chenbd@umn.edu</a>
 ✓ @XinranZ1 - zhuOO323@umn.edu
 ✓ @shui\_hong - shuiOOO3@umn.edu

### Questions and Suggestions

