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Collaborative Discourse’

* Socio-cognitive learning theories: Interpersonal communication is essential for learning in various
contexts.

« In the context of education: Collaborative discourse aims to leverage both cognitive and social process for

learners to engage in activities such as articulation, explanation, questioning and knowledge
co-construction.

Collaborative Discourse
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In authentic settings,

Learners’ interpersonal A direct exchange between . .
communication and humans who can contribute .sophlstlcatec.i collaborative
intersubjective intentionality and understanding discourse can involve complex
meaning-making to achieve to one another - the foundational dynamics of social and cognitive
learning goals beyond each act of language & an important processes.
individual. tool for learning.



Analysis of collaborative diSCOUrSe - amu-aceted prenomenon

Analytic approaches in three domains:

9 Cognitive Domain ,
Content analysis

- specific constructs of cognition

Social Domain Content analysis &

- constructs related to group dynamics SO [NE7ale
" Analysis (SNA)

coordination, and affective factors

Integrated Domain

- connection between cognitive and social domains, e.g.,
transactivity.

(Chen, Andrews, Hmelo-Silver, & D'Angelo, 2019)

Network approaches:

Content entities such as words can be studied as networks
» (e.g., co-occurrence, word sequence).

Social network centrality measures are used to evaluate a

» student’s social position in a class & network-level
measures.

» Socio-semantic network analysis integrates semantic
features of discourse with social networks.



Challenges of the network approaches

- Researchers need to more explicitly address Cognitive Domain Social Domain

discourse processes and assumptions when
constructing network from discourse data
- Given the close-knit relationship between

cognitive and social aspects of discourse, we
need more ways to examine the integrated
domain of discourse

Integrated Domain

) current study
- We need to develop more actionable

discourse indicators to improve the impact
of discourse analytics Socio-semantic network analysis

(Chen & Poquet, 2022)



The current study

Cognitive Domain Social Domain Grounded in socio-cognitive learning theories
\ / Inspired by advances in network science
Integrated Domain Motivated by a need for more integrated

approaches to investigating learning dialogues
Current Study

Socio-semantic network (SSN) motifs framework
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The Socio-Semantic Network Matifs Framework: Overview

® Discourse as social-semantic networks (SSNs) One individual learner

® The SSN motifs: minimal sets of social and semantic o Q
entities that are basic building blocks of a
socio-semantic network.

® In network science, network motifs have been widely Q)\V_«/*

used to examine a variety of networks including N
biological, technological, infrastructural, and social One individual word
networks (e.g. the two-layer network motifs for the

socio-ecological systems).



The SSN Matifs: Situating in Collaborative Discourse
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Modeling Collaborative Discourse




Modeling Collaborative Discourse as SSN - a case study

e Analytical decisions - what information to be retained and discarded?

o the top 100 high frequency words that have appeared for minimally 5 times are incorporated in the

socio-semantic network.

o Define the nodes and edges:

¢ Not considered in this
study

Word-Word
OO

1
4

* Only writing behaviors
were considered

* Threshold: edges with a
weight 2.

- 8
Learner-Word
5,

* Undirected for simplicity

Learner-Learner (8

o O

student



Computing SSN Matifs and the Significance Profile

® Whether the generated SSN is significantly different from random graphs?

O Step 1: compute motif frequencies (motifr R package, v 0.5.0) - initial indicators
of the discourse’s motif profile
O Step 2: examine the significance of the motif frequencies

B Generate 1,000 refined Erdos-Rényi random graphs as the null model
B Compare the empirical network’s motif frequencies with the random graphs

B AZ-score (-1, 1)is calculated for each SSN motif to show its over- or under-representation in the
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Application of the SSN Matifs Framework - A Study of Social Annatation

e Context: a secondary dataset generated from an undergraduate online course

Quantity of posts
e Intotal
o 478 Hypothes.is annotations
o 469replies

e On average:
o Each reading had 26.6 annotations

(SD = 2.6) and 26.1 replies (SD = 4.0).

e« Students(n=13)

« Annotate 1-2 readings each week and reply to
each other.

« 18 readings across 11 weeks

Quality of posts (human-coding)

A four-level knowledge construction
coding-scheme comprising (1) Initiation, (2)
Exploration, (3) Negotiation, (4) Co-construction
(Zhu, et al., 2021).

e higher levels — higher order-thinking skills

e 236(SD=0.21)
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Application of the SSN Matifs Framework - A Study of Social Annatation

e Findings - An example socio-semantic network created from discourse around a

particular reading.
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Upper layer: the undirected interaction network of

students

Lower layer: high frequency words generated from

students’ written discourse in a given week

Link between two layers: a word was mentioned at

least twice in a student’s posts.
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Application of the SSN Matifs Framework - A Study of Social Annatation

e Findings - Motif Analysis

o Overview of the significance of SSN motifs across all readings

N 11V
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A (0, 2a) A (0,2b) B(0,2) C(1,2b) E(1,4)
Motif | A(0,0) | A(1,0) | A(0,1) [ A(0,2a) | A(0,2b) | B(0,2) | B(0.3) | C(1,1) | C(1,2a) | C(1,2b) | D(1,2) | E(0,4) | E(1,3) | E(1,4)
Mean | 0.22 -0.04 | 0.01 0.33 -0.49 -0.21 | -0.07 | -0.13 | -0.02 -0.21 0.12 008 |[0.18 |0.39
SD 0.08 0.15 0.06 0.25 0.20 026 |007 |0.03 |[0.17 0.15 0.15 0.10 | 007 | 0.09

Over-represented

Under-represented

o Interpretation: it is insufficient to evaluate discourse based on one SSN motif; instead, it is
critical to concurrently consider multiple motifs.
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Application of the SSN Matifs Framework - A Study of Social Annotation

® Findings - visualization of the SSN Motif Profiles of readings
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Application of the SSN Matifs Framework - A Study of Social Annotation

® Findings

O  Correlation (Spearman’s p) between SSN motifs and knowledge construction:

0.25

K.C.

0.34 0.17 -0.4

-0.34

0.09

0.27

-0.21 0.04

0.41

A(0,0)

A(1,0)

O Interpretation:

A(02b) | B(02) B(0,3)

c(1,)

c(1,2a)

C(T.2b)

D(12)

E(0,4) E(1.3)

E(14)

positively correlated: A(0,1), E(1,4)
(Spearman’s p > .4); A(0.2b), D(1,2)
(Spearman’s p > .2)

negatively correlated (Spearman’s p <
-.2): B(0,3), €(1,1), and €(1,2a), and
E(0,4)

The average normalized Z-scores of motifs A(0,1), B(0,3), C(1,2a), and E(0,4) close to zero, meaning
they were nonsignificant in comparison with the random graph baseline.

Motif | A(0,0) | A(L,0) | A0,1) | A(0,22) | A(0,2b) | B(0,2) | B(0,3) | C(1,1) || C(1,2a) || C(1,2b) | D(L,2) | E(0,4) | E(1,3) | E(L,4)
Mean | 0.22 -0.04 0.01 0.33 -0.49 -0.21 -0.07 | -0.13 -0.02 -0.21 0.12 0.08 0.18 0.39
SD 0.08 0.15 0.06 0.25 0.20 0.26 0.07 0.03 0.17 0.15 0.15 0.10 0.07 0.09

Therefore, higher Z-scores of E(1,4), and A(0,2b) were associated with higher knowledge

construction, whereas higher C(1,1) were linked to lower knowledge constructions.
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Conclusion and Implications

® Key findings:
O  We proposes a nascent socio-semantic network (SSN) motifs framework for the analysis of collaborative
discourse.

Results showed general characteristics of discourse in the class as well as distinct motif profiles of
different discourse segments.

O  Some SSN motifs were associated with higher- or lower-level knowledge construction

® Implications:

O  The motifs framework can provide an overview of discourse

O  In comparison with traditional descriptive statistics and SNA metrics, the SSN motifs can provide nuanced

information about discourse, which can be used to evaluate instruction and inform pedagogical actions.
O  The framework is generic enough to be adapted to different discourse contexts.
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Future Work

To further refine the motif classification system

Apply the framework to other discourse contexts and situate it closely in pedagogical
designs

o Combine SSN motif analysis with other analytical methods

o Explore pedagogical interventions based on network motifs, such as “critical gaps”
showing high impact links that could create a large number of sophisticated motifs.
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